Nuclear Quantum Effects on the Proton/Deuteron Transmission through Hexagonal Boron Nitride and Graphene Monolayers

*Ekanayake, N.T.¹, Huang, J.², Jakowski, J.², Sumpter, B.G.³, Garashchuk, S⁴

¹Graduate Research Assistant, Department of Chemistry and Biochemistry, University of South Carolina ²Staff scientist, Center for Nanophase Materials Sciences and computational Sciences & Engineering Division, Oak Ridge National Laboratory, ³Deputy director, Center for Nanophase Materials Sciences and computational Sciences & Engineering Division, Oak Ridge National Laboratory, ⁴Professor, Department of Chemistry and Biochemistry, University of South Carolina

cthilakn@email.sc.edu

Keywords: Hexagonal Boron Nitride, Graphene, Kinetic isotope effect

Abstract: Atomically thin hexagonal boron nitride and graphene can be exploited as possible platforms for the development of novel technologies related to energy storage, gas separation and membrane. Recent experiments suggest that h-BN and graphene monolayers are highly permeable to thermal protons under ambient conditions. We have examined energetics and mechanism of proton tunneling through h-BN and graphene within a molecular model of H₂O - H(D)⁺- material - H₂O to mimic the experimental conditions. The potential energy surfaces along the transmission direction are obtained using correlated electronic structure methods. Exact quantum mechanical scattering approach is employed to assess the nuclear quantum effects such as tunneling factors and kinetic isotope effect (KIE). We found that nuclear quantum effects influence the thermal reaction rate constants (KIE of 3-4 for hexagonal boron nitride and 20-30 for graphene) and lowers the activation energy by 0.2 and 0.4 eV for two monolayers, respectively. The lowering effect is reduced by approximately a factor of 3 for the deuteron. As future work, a more descriptive model of the proton transmission with an extended aqueous environment and dynamics studies with flexible membranes employing on-the-fly quantum- trajectory-electronic structure approach will be pursued.